在线投诉 | 邮件投诉 | QQ投诉 | 4006-400-312
当前位置:资讯首页 > 资讯新闻 > 正文
    
数据挖掘在电子商务客户关系中的应用
2012-07-03 22:56:50 来源:派代
本文提出了一种新的基于数据挖掘的电子商务客户关系系统,设计了系统的框架,介绍了常用的数据挖掘算法,提出了在系统中数据挖掘的应用领域,对企业构建电子商务客户关系系统具有现实意义。

本文提出了一种新的基于数据挖掘的电子商务客户关系系统,设计了系统的框架,介绍了常用的数据挖掘算法,提出了在系统中数据挖掘的应用领域,对企业构建电子商务客户关系系统具有现实意义。

一、引言

随着因特网的出现,电子商务大潮正在全球范围内急速改变传统的商业模式,传统企业管理的着眼点往往在后台,ERP系统帮助他们实现了这种内部商业流程的自动化,提高了生产效率。而对于前台,往往重视的不够,面对诸如:哪种产品最受欢迎、原因是什么、有多少回头客、哪些客户是最赚钱的客户、售后服务有哪些问题等,大部分企业还只能依靠经验来推测。作为专门管理企业前台的客户关系管理为企业提供了一个收集、分析和利用各种客户信息的系统,帮助企业充分利用其客户管理资源。

如何有效的处理海量客户信息,从中挖掘判断出客户的消费趋向,实施一对一营销成为摆在电子商务企业面前的一大问题。将数据挖掘技术用于电子商务的客户关系管理几乎是从数据挖掘诞生起就注定的。电子商务企业在与客户接触时,采用的亦多是网络手段,这也决定了商家对客户的管理以及保持不能再依靠传统人际营销,而是更加依赖于对客户的消费习惯以及个人偏好的把握,而使得商家能够做出准确判断的。

二、电子商务客户关系系统设计框架

电子商务客户关系系统主要有三部分组成,即web服务器、数据仓库、数据挖掘模块。Web服务器上运行面向员工、客户、伙伴的web应用程序,主要的业务是处理销售和客户服务。业务系统把数据存到数据仓库中,需要数据时,从数据仓库获取数据。挖掘模块根据决策需要采用合适的挖掘算法对数据仓库中的数据进行挖掘,并把结果返回给决策系统,然后生成报表输出。

1.电子商务CRM中的数据挖掘流程

电子商务CRM中的数据挖掘的主要流程是定义问题、数据预处理、算法应用、结果分析、知识的运用。定义问题就是要清晰地定义出业务问题,确定数据挖掘的目的。数据预处理主要是选择在大型数据库和数据仓库目标中提取数据挖掘的目标数据集,这主要涵盖了客户登陆该电子商务网站时的背景信息以及过去的购买以及点击流信息,然后进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。算法应用是根据数据功能的类型和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。结果分析是对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。知识的运用是将分析所得到的知识集成到业务信息系统的组织结构中去。

2.电子商务CRM中的数据挖掘算法

(1)神经网络方法。神经网络由于本身良好的自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。

(2)遗传算法。是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法,具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。遗传算法的应用还体现在与神经网络、粗集等技术的结合上。

(3)粗糙集算法。粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。

(4)模糊集方法。即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强。

3.电子商务CRM中的数据挖掘应用领域

(1)客户细分。利用数据挖掘技术可对大量的客户分类,提供针对性的产品和服务。这种一对一的关系从客户的角度来看是个性化的,甚至让他觉得是独一无二针对他本人的。事实上,对于电子商务企业来说,一对一营销是互联网使得大规模定制成为可能之后的一种针对同类客户的网络营销方式。

(2)客户流失和保持分析。在客户流失和保持分析系统中,数据挖掘技术根据以前拥有的客户流失数据建立客户属性,服务属性和客户消费数据与客户流失可能性关联的数学模型,找出客户属性,服务属性和客户消费数据与客户流失的最终状态的关系。

(3)价值客户判断。在管理客户组合时,理想状况是拥有多层面的、具有不同利润贡献的客户群组。也就是说,第一层面的客户组群处于成熟期,在目前能够贡献丰富的利润;而第二层面的客户组群尚处于成长期,在目前的利润贡献很低,甚至没有,但该层面的客户组群是企业未来的盈利引擎;第三层面的客户群组尚处于开拓期,在目前没有利润贡献,但该层面的客户群组是企业永续经营的增长引擎。

(4)客户满意度分析。客户满意度与客户忠诚度密切相关,随着客户满意度的增加客户忠诚度也随之增加。所以,企业与客户交往的目标就是尽可能的增加客户满意度。

三、总结

本文本着实用、有效的原则,设计了电子商务客户关系系统的框架,介绍了常用的数据挖掘算法,提出了在系统中数据挖掘的应用领域,对企业构建电子商务客户关系系统具有十分重要的现实意义。

相关文章